中学 数学

2次方程式の解の公式を使った解き方

更新日:

例題

以下の2次方程式を解きなさい。

(1)x2+4x+1=0
(2)2x2-3x-3=0

2次方程式の解の公式

a≠0とすると,2次方程式ax2+bx+c=0の解は

x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}

となります。なぜそうなるのかはax2+bx+c=0を平方完成していけば良いのですが,文字の式が複雑になり,いかんせん式が長くなりすぎるので今回は割愛します。(2014/6/22追記:「解の公式の証明」追加しました)

まぁ,でも,中学3年間で習う公式の中では最も複雑極まりない公式なことには変わりありませんが,ね・・・。

スポンサードリンク

解説・解法

(1)この「解の公式」に当てはめて,問題を解いていきます。解の公式のa,b,cにそれぞれa=1,b=4,c=1を代入していくと

x=\frac{-4\pm\sqrt{4^{2}-4\times 1\times 1}}{2 \times 1}
x=\frac{-4\pm\sqrt{16-4}}{2}
x=\frac{-4\pm\sqrt{12}}{2}
x=\frac{-4\pm2\sqrt{3}}{2}

分母が2で,分子2つとも2で割れますので約分して

x=-2\pm\sqrt{3}

が解になります。

(2)同様に,解の公式に当てはめます。解の公式のa,b,cにそれぞれa=2,b=-3,c=-3を代入して

x=\frac{-3\pm\sqrt{(-3)^{2}-4\times 2\times (-3)}}{2 \times 2}
x=\frac{-3\pm\sqrt{9+24}}{4}
x=\frac{-3\pm\sqrt{33}}{4}

\sqrt{33}の中はこれ以上簡単にならないので,これが解になります。解の公式を使うとき・・・後々で習う「因数分解できないとき」なのですが,結構厄介な感じの答えになってしまいます。

答案

(1)

x=\frac{-4\pm\sqrt{4^{2}-4\times 1\times 1}}{2 \times 1}
x=\frac{-4\pm2\sqrt{3}}{2}
x=-2\pm\sqrt{3}・・・(答え)

(2)

x=\frac{-3\pm\sqrt{(-3)^{2}-4\times 2\times (-3)}}{2 \times 2}
x=\frac{-3\pm\sqrt{9+24}}{4}
x=\frac{-3\pm\sqrt{33}}{4}・・・(答え)







-中学, 数学

Copyright© 勉強ナビゲーター , 2017 All Rights Reserved Powered by STINGER.